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Abstract

This paper presents Timeproof, a novel cryptographic protocol for probabilistic truth verifi-
cation utilizing blockchain-based temporal persistence. The proposed framework integrates
secure commitment schemes with economic incentives to establish a verifiable system for math-
ematical claims. A key innovation is the introduction of a temporal verification function that
quantifies the probability of a claim’s validity based on its duration of remaining uncontested.
The research provides three main contributions: (1) a formal mathematical framework for
probabilistic truth verification, (2) a practical implementation using Bitcoin’s blockchain with
proven security properties, and (3) a comprehensive game-theoretic analysis of the protocol’s
incentive structure. Security proofs are established under standard cryptographic assumptions,
demonstrating the protocol’s applicability to significant mathematical problems including the
P vs NP conjecture. The analysis also addresses post-quantum security considerations and
identifies potential attack vectors.



Timeproof Protocol

A timeproof is a cryptographic protocol and mathematical framework designed to establish
probabilistic truth and priority for mathematical assertions through temporal persistence on
the Bitcoin blockchain. First implemented in 2015, it combines cryptographic escrow mecha-
nisms with blockchain timestamping to create an incentive-driven system for mathematical
discovery.

1.0.1 Motivation

Traditional mathematical proofs require complete deductive arguments, which can be chal-
lenging for complex problems like P vs NP. Timeproof offers an alternative approach using
cryptographic commitments and temporal verification, addressing the challenge of establishing
priority and probabilistic truth for mathematical claims in a verifiable, incentive-compatible
manner.

1.0.2 Contributions

The Timeproof protocol’s key contributions include:

• Formal definition of the Timeproof protocol and theorems

• Probabilistic verification model using survival analysis

• Bitcoin-based implementation with cryptographic escrow

• Security analysis against preimage and collusion attacks

• Computational complexity implications, particularly for P vs NP

1.1 Historical Context

The timeproof protocol emerged from a specific application to the P versus NP problem. The
first implementation occurred on May 30, 2015, at 11:43:39 UTC, when a proposed proof of
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P = NP was committed to the Bitcoin blockchain mainnet through the Proof of Existence
service [29].

This timeproof was recorded in a Bitcoin transaction with the hash
378933871106d84dcac011be06770acfe0491f6f80fe0402f399e0f548ebb99f,
where the proof documents’ SHA-256 hash
33095308466a6e896cb3dc71f40a1710ab9f4fc29205ecf55b34362f7ed52e66

was permanently embedded in the blockchain.
The implementation utilized a Bitcoin address

1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa

(the genesis block address) as the cryptographic escrow point, creating what would later
be formalized as the timeproof protocol. This historical instance serves as both the genesis
and a practical demonstration of the protocol’s core concepts: timestamped commitment of
mathematical claims, cryptographic escrow mechanisms, and blockchain-based verification.

The temporal persistence of this initial implementation provides an empirical foundation
for the protocol’s effectiveness. As of February 5, 2025, the continued existence of the
unclaimed bounty contributes to the accumulating probabilistic evidence regarding the
original claim, demonstrating the practical application of the verification function V (∆t)

described in this work.

Consistency Paradox in Mathematical Verification

The protocol reveals an inherent tension in mathematical verification through three key
observations:

• Existence of Unverifiable Proofs: The blockchain persistence demonstrates that
proofs can exist without being constructively verifiable, as shown by the unclaimed
bounty mechanism

• Computational Constraints: Under finite computational resources, certain proofs
remain practically unverifiable despite their theoretical existence

• Temporal Dependence: The verification probability V (∆t) shows that mathematical
truth can be time-dependent, challenging traditional notions of mathematical certainty

This tension is formally captured by the verification function:

lim
∆t→∞

V (∆t) = 1 while ∃t0 such that V (t0) = 0

The protocol thus provides a framework for understanding the boundary between:
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• Existence of mathematical proofs

• Practical verifiability

• Computational complexity constraints

1.2 Core Protocol Components

1.2.1 Encrypted Assertion

A mathematical claim, such as a proof that ( P = NP ), is encrypted using a key derived
from an unsolved cryptographic problem [13]. For instance, let X be an unknown value,
and define the key as K = SHA-256(X). The proof is then encrypted with K, ensuring its
confidentiality until X is discovered.

1.2.2 Bounty Mechanism

Funds are locked in a Bitcoin address whose private key is deterministically generated from
the cryptographic problem. The protocol anticipates two possible outcomes:

• Unclaimed Bounty: As time progresses without the problem being solved, there is
increasing probabilistic evidence supporting the negation of the claim (e.g., P ̸= NP ).

• Claimed Bounty: Solving the cryptographic problem allows the claimant to access
the funds and the decrypted proof, with the blockchain providing a verifiable timestamp
of the original assertion and the author’s signature to authenticate the claim’s origin.

1.2.3 Temporal Verification

The Bitcoin blockchain mainnet [28] is utilized for immutable timestamping. Building on
foundational work in secure timestamping [19, 4], tools such as OpenTimestamps and Proof
of Existence facilitate this process:

• OpenTimestamps: Provides a standard for blockchain timestamping by aggregating
file hashes into a Merkle tree, committing the Merkle root to the Bitcoin blockchain,
and returning a proof file that can be independently verified [30].

• Proof of Existence: Offers a service to certify the existence of a document at a
specific time by embedding its hash in the Bitcoin blockchain [29].
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A verification function V (∆t) quantifies confidence over time, building on established prob-
abilistic proof systems [3] and timed commitment schemes [9]. The mechanism incorporates
modern verifiable delay functions [8] to ensure:

• As ∆t increases without a bounty claim, V (∆t)→ 1, suggesting that the claim is likely
false.

• If the bounty is claimed, V (∆t)→ 0, indicating that the claim has been proven true.

Verification Function V (∆t)

The verification function V (∆t) is modeled as a Weibull distribution:

V (∆t) = 1− exp

(
−
(
∆t

η

)β
)

(1.1)

where:

• η is the scale parameter (characteristic time)

• β is the shape parameter (capturing increasing/decreasing hazard rate)

Justification for Weibull Distribution: The Weibull distribution is particularly
appropriate because:

• It can model both increasing and decreasing failure rates over time, which aligns with
the reality that the probability of solving a mathematical problem may change as new
techniques emerge

• It has been successfully used in similar contexts of time-to-event analysis in computa-
tional complexity [20]

• The distribution’s flexibility allows it to model different problem-solving dynamics:

– β < 1: Decreasing hazard rate (solutions become less likely over time)

– β = 1: Constant hazard rate (exponential distribution)

– β > 1: Increasing hazard rate (solutions become more likely over time)

• Empirical studies of mathematical problem-solving times show Weibull-like distributions
[16]

Alternative Models: While the Weibull distribution is our primary model, we acknowl-
edge that other distributions could be considered:
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• Poisson process with time-varying rate

• Log-normal distribution for solution times

• Gamma distribution for accumulated solving effort

However, the Weibull distribution provides the best fit for our purposes due to its flexibility
and interpretability of parameters.

1.2.4 Address Generation

Algorithm 1 Timeproof Address Selection
Input: H ∈ {0, 1}256 ▷ Proof hash
Input: S ∈ {0, 1}256 ▷ Salt
Output: Bitcoin address A
1: procedure SelectEscrowAddress(H,S)
2: k ← HMAC-SHA256(key = S,msg = H) mod n ▷ secp256k1 curve order n =

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C
D0364141

3: K ← k ·G ▷ Public key derivation
4: Address Construction
5: Kbytes ← bytes(K.x) ∥ bytes(K.y)
6: Hsha ← SHA-256(Kbytes)
7: Hripe ← RIPEMD-160(Hsha)
8: Anet ← 0x00 ∥ Hripe

9: C ← first_4_bytes(SHA-2562(Anet))
10: Afinal ← Base58(Anet ∥ C)
11: return Afinal

12: end procedure

The implementation makes use of Merkle tree structures [27] for efficient hash aggregation.
Where the algorithm makes use of:

• SHA-2562(x) ≡ SHA-256(SHA-256(x))

• ∥ denotes byte concatenation

• All conversions between integers and bytes use big-endian encoding

• Security depends on the elliptic curve discrete logarithm problem (ECDLP) [6]

• Key derivation follows NIST SP 800-56A Rev. 3 key derivation guidelines
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1.2.5 The Role of the Salt

The salt S in the Timeproof protocol serves several critical purposes, even though the same
proof can be published multiple times with definitive timestamps:

Preventing Precomputation Attacks

• Without a salt, an attacker could precompute potential solutions X ′ for a known proof
hash H and derive the corresponding Bitcoin address A in advance.

• The salt ensures that the Bitcoin address A is unique for each instance of the proof,
even if the same proof is published multiple times. This makes precomputation attacks
infeasible.

Ensuring Uniqueness of the Bitcoin Address

• The Bitcoin address A is generated using both the proof hash H and the salt S. This
ensures that even if the same proof is published multiple times, each instance will have
a unique Bitcoin address.

• This uniqueness is critical for the bounty mechanism, as it prevents confusion or conflicts
between multiple instances of the same proof.

Security Against Rainbow Table Attacks

• The salt acts as a defense against rainbow table attacks, where an attacker precomputes
hashes for common inputs. By introducing a unique salt, the attacker cannot reuse
precomputed tables, making brute force attacks significantly more difficult.

Supporting Multiple Proofs

• If multiple proofs are published for the same mathematical claim (e.g., different ap-
proaches to proving P = NP ), the salt ensures that each proof has a distinct Bitcoin
address. This allows for independent verification and bounty claims for each proof.

Enhancing Privacy

• The salt adds an additional layer of obfuscation, making it harder for an attacker to
link multiple instances of the same proof or infer relationships between different proofs.
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Example Scenario

Suppose Alice publishes a proof of P = NP with salt S1, and Bob publishes the same proof
with salt S2. The Bitcoin addresses A1 and A2 will be different because:

A1 = SelectEscrowAddress(H,S1)

A2 = SelectEscrowAddress(H,S2)

Even though the proof hash H is the same, the salts S1 and S2 ensure that A1 ̸= A2. This
prevents any ambiguity in the bounty mechanism and ensures that each instance of the proof
is treated independently.

Security Implications

The security implications can be summarized as follows:

• Without Salt: An attacker could precompute solutions for a known proof hash H and
derive the Bitcoin address A in advance, undermining the security of the protocol.

• With Salt: The attacker must solve the puzzle for each unique salt, making the attack
computationally infeasible.

1.2.6 Salt Generation and Security

The salt S is generated as a 256-bit random value, ensuring sufficient entropy to prevent brute
force attacks. The security of the protocol relies on the unpredictability of S, as it prevents
precomputation attacks and ensures the uniqueness of the Bitcoin address A. The salt is
stored alongside the proof hash H and the timestamp, allowing for independent verification
of the proof’s integrity.

1.2.7 Adversarial Considerations

The attacker does not initially know the hash K, which is derived from an unknown value X

using the SHA-256 function, i.e., K = SHA-256(X). The attacker’s goal is to find X such
that SHA-256(X) = K. Here’s how the attacker might attempt to discover K:

Attacker’s Process

• Public Information: The hash K is not directly public, but the attacker can infer it
from the Bitcoin address A and the proof hash H. The Bitcoin address A is generated
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from K and the salt S using the SelectEscrowAddress algorithm. If the attacker
knows H and S, they can attempt to derive K by solving the ECDLP, which is
computationally infeasible.

• Brute Force Search: The attacker performs a brute force search to find X such
that SHA-256(X) = K. This involves generating potential candidates X ′, computing
SHA-256(X ′), and comparing the result to K.

• Optimization Techniques: The attacker may use optimization techniques to reduce
the search space, such as parallel computing or cryptographic attacks. Rainbow tables
are ineffective against high-entropy inputs like X.

• Verification: Once a candidate X ′ is found such that SHA-256(X ′) = K, the attacker
verifies the solution by decrypting the proof using K and checking the validity of the
decrypted proof.

Multiple Publications

The Timeproof protocol leverages Bitcoin’s blockchain to provide immutable and verifiable
timestamps, ensuring that even if the same proof is published multiple times, the first
publication can be definitively identified. Here’s why this works:

• Immutable Timestamps: The Bitcoin blockchain provides a tamper-proof record
of when a proof was first published. Once a proof is embedded in the blockchain, its
timestamp cannot be altered or backdated.

• Proof Hash Uniqueness: Each proof is hashed using SHA-256, producing a unique
identifier (H). Even if the same proof is published multiple times, the hash H remains
the same, and the earliest timestamp associated with H is definitive.

• First-to-Publish Priority: The protocol ensures priority by recording the first
instance of the proof’s hash in the blockchain. Subsequent publications of the same
proof will have later timestamps, which are irrelevant for establishing priority. This
mechanism is particularly important in scenarios where:

– Simultaneous Discoveries: In major mathematical breakthroughs like P vs NP,
it’s common for multiple research groups to arrive at similar solutions independently
around the same time. The blockchain timestamp provides an immutable record
of who published first.
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– Verifiable Proof of Priority: The timestamp serves as cryptographic evidence
of when the proof was first committed, preventing disputes about who discovered
the solution first.

– Independent Verification: The timestamp allows anyone to verify the exact
moment the proof was published, without relying on potentially biased third-party
witnesses or publication timelines.

– Global Standardization: Blockchain timestamps provide a globally consis-
tent time reference, eliminating issues with timezone differences or local clock
inaccuracies.

– Preventing Backdating: The immutability of the blockchain prevents any party
from fraudulently claiming an earlier publication date.

The protocol’s timestamping mechanism is designed to handle the likely scenario where
multiple groups may independently solve P vs NP simultaneously, ensuring that credit
and recognition are properly assigned to the first discoverer.

Example Scenario

Suppose the mathematical claim is a proof that P = NP , encrypted with key K =

SHA-256(X). The attacker’s steps would be:

1. Identify the Puzzle: The attacker knows the Bitcoin address A and the proof hash
H.

2. Brute Force Search: The attacker starts generating random values X ′ and computes
SHA-256(X ′).

3. Optimization: The attacker uses a distributed computing network to speed up the
search.

4. Verification: When SHA-256(X ′) = K, the attacker decrypts the proof and verifies
its correctness.

5. Claiming the Bounty: The attacker uses X ′ to derive the private key and transfers
the funds.

Security Considerations

The protocol’s mainnet security relies on several key factors:
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• Quantum Resistance: While currently secure, future quantum computers could
potentially break the cryptographic primitives used. The protocol should be designed
with quantum-resistant alternatives in mind

• Network Security: The security of the Bitcoin mainnet network itself is crucial, as
any compromise could affect the integrity of the timestamps

• Key Management: Proper key management practices are essential to prevent loss of
funds or proof access

• Computational Difficulty: SHA-256 is designed to be computationally intensive to
reverse, making brute force searches impractical without significant resources

• Economic Incentives: The bounty must be large enough to justify the computational
cost of solving the puzzle

• Temporal Persistence: The longer the puzzle remains unsolved, the stronger the
probabilistic evidence that the claim is falsxe

• Preventing Precomputation Attacks: The salt ensures that the Bitcoin address is
unique for each instance of the proof, making precomputation attacks infeasible

• Rainbow Table Resistance: The salt acts as a defense against rainbow table attacks,
making brute force attacks significantly more difficult

By solving the puzzle, the attacker not only gains access to the encrypted proof but also
claims the financial bounty, thereby providing a definitive resolution to the mathematical
claim.

1.2.8 Security Proofs

Definition 1 (Timeproof Security Game). Let A interact with challenger C in the following
phases:

1. Setup: C generates (pk, sk)← KeyGen(1λ) 2. Commit Phase: A makes polynomial
many Commit queries with (Hi, Si) 3. Verify Phase: A makes Verify queries on (tj, σj)

4. Forge: A outputs forgery (t∗, σ∗)

A wins if Verify(pk, t∗, σ∗) = 1 for unqueried t∗ with non-negligible advantage.

Theorem 1 (Security Reduction). Under the post-quantum security of SHA3-256 and
CRYSTALS-Dilithium, for any PPT adversary A,

AdvTimeproof
A (λ) ≤ q2H

2256
+ AdvEUF-CMA

ML-DSA (λ)
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where qH is the number of hash queries and ML-DSA is Module-Lattice Digital Signature
Algorithm [14].

Proof. We reduce the security of the timeproof protocol to the hardness of SHA-256 preimage
resistance and ECDLP:

1. Timestamp Forgery: Assume an adversary A can forge a timestamp. This would
require either:

• Breaking Bitcoin’s blockchain security (reduced to ECDLP)

• Creating a valid proof with an earlier timestamp (reduced to SHA-256 preimage
resistance)

2. Proof Confidentiality: Assume A can decrypt the proof without solving the puzzle.
This would require:

• Finding a preimage X ′ such that SHA-256(X ′) = K (directly reduces to SHA-256
preimage resistance)

3. Address Integrity: Assume A can generate a valid address without the correct H

and S. This would require:

• Solving the ECDLP to derive the private key from the public key

Since all three cases reduce to problems assumed to be hard, the protocol is secure.
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1.3 Protocol Implementation

1.3.1 Algorithmic Details

The Timeproof protocol is implemented using Bitcoin-compatible cryptographic primitives.
Below is the core algorithm in pseudocode:

Algorithm 2 Timeproof Protocol
1: procedure CreateProof(proof, pubkey, privkey, bounty)
2: proofHash← SHA-256(proof)
3: signature← Sign(privkey, proofHash)
4: escrowAddress← DeriveAddress(proofHash)
5: locktime← CurrentTime + 1, 000, 000 years
6: Verify bounty ≥ 1 BTC
7: Return (proofHash, signature, escrowAddress, locktime)
8: end procedure
9: procedure VerifyProof(proofHash, signature, pubkey, locktime)

10: Verify VerifySig(pubkey, signature, proofHash)
11: Verify CurrentTime ≥ locktime
12: Return True if all verifications pass
13: end procedure
14: procedure ClaimBounty(solution, escrowAddress, proofHash)
15: derivedAddress← DeriveAddress(proofHash)
16: Verify escrowAddress = derivedAddress
17: Verify ValidateSolution(solution)
18: Transfer funds from escrowAddress to claimant
19: Return True if claim successful
20: end procedure

The implementation includes the following key components:

• Proof Creation: Generates cryptographic commitments and signatures

• Proof Verification: Validates proof integrity and temporal requirements

• Bounty Claim: Processes solution verification and fund transfer

1.3.2 Workflow

The timeproof protocol operates through the following sequence:

1. Encrypt the proof document P with key K = SHA-256(X)

2. Create author signature σ = Signsk(H ∥ S ∥ timestamp)
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3. Derive Bitcoin address:

• Compute H = SHA-256(EncryptedProof)

• Generate A = SelectEscrowAddress(H,S)

4. Record timestamp for tuple (σ,H, S,A)

5. Transfer funds to address A

1.3.3 Practical Considerations

The Timeproof protocol faces several practical challenges:

• Network Latency: The protocol relies on the Bitcoin blockchain for timestamping,
which introduces delays due to network latency and block confirmation times. This can
impact the timeliness of proof verification.

• Scalability: As the number of proofs increases, the protocol may face scalability issues
due to the limited throughput of the Bitcoin blockchain. Future work could explore the
use of layer-2 solutions or alternative blockchains to address this limitation.

• Storage Costs: Storing encrypted proofs and associated metadata on the blockchain
can be costly. The protocol could benefit from off-chain storage solutions, such as IPFS,
to reduce storage costs while maintaining verifiability.

1.4 Mathematical Foundations

A timeproof T for a statement S is defined as a tuple (E, V, t), where:

• E: Encrypted proof or disproof.

• V (∆t): Verification function defined as:

V (∆t) = 1− exp

(
−
∫ ∆t

0

λ(t)dt

)
where λ(t) follows a non-homogeneous Poisson process with:

λ(t) =
fX(t)

1− FX(t)

for probability density function fX and CDF FX of solution time distribution, following
rigorous survival analysis [2].
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1. Temporal Monotonicity: Proven via survival analysis [24]:

S(t) = exp

(
−
∫ t

0

h(u)du

)
where hazard function h(u) ≥ 0 ∀u, making S(t) non-increasing

2. Asymptotic Certainty: lim∆t→∞ V (∆t) = 1 if S is false.

3. Zero-Knowledge Priority: Requires satisfying

VerifySigpk(σ,H ∥ S ∥ t) = 1

without revealing sk or proof contents

These verification properties build on fundamental results in interactive proof systems
[18], with security guarantees derived from established cryptographic primitives [7, 10].

Theorem 2 (Houk’s Theorem of Temporal Verification). Let T be a timeproof for statement
S with verification function V (∆t). Then:

1. (Temporal Monotonicity) V (∆t) is non-decreasing in ∆t 2. (Asymptotic Certainty)
lim∆t→∞ V (∆t) = 1 if S is false 3. (Bounded Verification) For any finite ∆t, V (∆t) < 1 4.
(Solution Detection) If S is true, ∃t0 such that V (t) = 0 for all t ≥ t0

Furthermore, these properties hold under the following assumptions:

• The cryptographic hash function is preimage-resistant

• The blockchain provides immutable timestamps

• Economic incentives are properly aligned

Proof. 1. Temporal Monotonicity: Follows from the Weibull distribution’s properties and
the non-decreasing nature of the cumulative hazard function.

2. Asymptotic Certainty: As ∆t → ∞, the probability of the problem remaining
unsolved approaches zero, making V (∆t)→ 1.

3. Bounded Verification: For finite ∆t, there’s always non-zero probability of solution,
so V (∆t) < 1.

4. Solution Detection: When S is true, the solution will be found at some finite time
t0, after which V (t) = 0 for all t ≥ t0.

The assumptions ensure the protocol’s security and proper functioning:

• Preimage resistance prevents premature solution discovery
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• Immutable timestamps guarantee temporal integrity

• Economic incentives maintain protocol participation

1.5 Mathematical Assertion Delay (MAD) Paradox

The MAD Paradox introduces a probabilistic model of truth verification over time. The
verification function:

V (∆t) = 1− exp (−λ∆t)

where V (∆t) is the probability of truth after time ∆t, provides a framework for understanding
how temporal persistence can establish global truth over time.

This builds on the blockchain timestamping work presented in [19], which established the
foundation for secure timestamping mechanisms.

1.6 Case Study: P vs NP Problem

To apply the timeproof protocol to the ( P ) vs ( NP ) problem [12, 23]:

1. The prover encrypts a proof that P = NP using a key derived from SHA-256(X).

2. A bounty address is created at 1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa, containing
funds that are claimable only by solving SHA-256(X).

3. The system continuously monitors:

• The elapsed time since the timestamp, providing probabilistic evidence for P ̸=
NP .

• The blockchain for any bounty claims, which would serve as definitive proof that
P = NP .

1.6.1 Non-Constructive Proof via MAD Paradox

The Timeproof protocol formally captures the MAD paradox through:

Theorem 3 (Computational Incompleteness). In any computational system with finite
resources:
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1. There exist mathematical statements whose truth cannot be determined within the system,
as established by Gödel’s first incompleteness theorem [17].

2. The P vs NP problem remains undecidable under finite computational constraints,
consistent with the Cook-Levin theorem [12] and the P vs NP conjecture.

3. Any attempt to resolve these limitations within the system leads to inconsistency,
analogous to Gödel’s second incompleteness theorem [17].

Thus, infinite computational resources are required for complete consistency.

Proof. Using the protocol’s temporal verification function:

1. As ∆t → ∞, V (∆t) → 1 demonstrates the existence of undecidable statements,
mirroring the halting problem’s undecidability [33].

2. The persistent unclaimed bounty shows that P vs NP remains unresolved under finite
constraints, consistent with the exponential time hypothesis [22].

3. The blockchain’s unbounded growth represents the need for infinite resources, analogous
to the Church-Turing thesis [11] and the physical limits of computation [26].

Physical Implications

The protocol’s properties suggest deep connections between computation and physics:

• Computational Limits: Analogous to Gödel’s incompleteness theorems, the protocol
highlights fundamental limits on what can be computed with finite resources, as explored
in computational complexity theory [1].

• Resource Constraints: Similar to physical systems, computational systems face
fundamental limits such as energy (Landauer’s principle [25]) and information storage
(Bekenstein bound [5]).

• Information-Theoretic Connections: The protocol bridges computation and physics,
suggesting that computational limits may have physical analogs, such as entropy in
thermodynamics [32] and quantum mechanics [15].
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1.6.2 Oracle Verification Mechanism

An oracle O capable of solving NP problems in P time can use the Timeproof protocol to
demonstrate this capability without revealing their method:

1. Prover submits c = Commit(X, π) where π represents their P=NP acceleration capabil-
ity

2. O runs:

1: while ∆t < Tmax do
2: Select random NP-complete problem Pi

3: Solve Pi using acceleration capability
4: Generate proof πi of solution
5: Commit πi to blockchain
6: return ZK-SNARK(πi) ▷ Proves solution without revealing method

7: return P = NP acceleration capability with confidence 1− exp(−λTmax)

3. Verification uses:

Ψ(t) = Θ

(
1

n

n∑
i=1

Vi(t)−
1

2

)1 if ∃consistent acceleration

0 otherwise
(1.2)

where Θ is the Heaviside step function and Vi(t) verifies individual problem solutions

1.6.3 Phase Transition Risks

The protocol introduces abrupt phase changes in mathematical certainty:

∂V

∂t
= δ(t− t0)(1− V (t−0 )) (1.3)

where t0 is solution discovery time. Implications include:

• Instantaneous collapse of cryptographic security

• Economic shock from simultaneous bounty claims

• Existential risk from NP-hard solution optimization

17



N. J. Houk Timeproof Protocol

Table 1.1: Phase Transition Triggers
Trigger Effect Timescale
P=NP Proof Cryptographic collapse Minutes
P ̸=NP Proof Research paradigm shift Years
Quantum Breakthrough Protocol migration Days

1.7 Protocol Analysis

1.7.1 Significance

The timeproof protocol offers several groundbreaking features:

• It provides the first mechanism for probabilistic proofs of unproven mathematical
statements.

• It enables time-based truth discovery in complexity theory.

• It allows for blockchain-verifiable priority without disclosure.

Additionally, the protocol serves a dual function:

• It incentivizes solutions through financial rewards.

• It provides negative evidence through temporal persistence.

1.7.2 Economic Considerations

The protocol’s economic model is crucial to its security and effectiveness:

• Bounty Size: The bounty must be large enough to incentivize solution attempts but
not so large as to encourage malicious behavior

• Time Value: The locked funds should account for the time value of money, potentially
through interest-bearing mechanisms

• Market Dynamics: The protocol should consider the potential impact on cryptocur-
rency markets from large bounty claims
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1.7.3 Limitations

While innovative, the timeproof protocol has certain limitations:

• Confidence bounds depend on:

– Current computational capabilities.

– Assumptions of economic rationality.

– The security of cryptographic primitives.

• It cannot provide:

– Absolute mathematical certainty.

– Traditional deductive proof structures.

• Modified economic assumptions:

– Strategic Withholding: Solutions may be temporarily withheld for zero-day
exploitation

– Altruistic Non-Claim: Moral objections to financial rewards for pure mathe-
matics

– Legal Constraints: Export restrictions on cryptographic discoveries

• Mitigation via game-theoretic analysis [31]:

u(c) = pc · b− (1− pc) · δt

where u(c) is utility of claiming at time t, pc is probability of valid claim, and b is
bounty value

• 1.7.4 Hash Function Agility

The protocol specifies cryptographic migration conditions:

TransitionThreshold = min

(
Bcurrent

Boriginal
, 280

)
where B represents brute-force cost estimates. Migration follows IETF RFC 7696 [21]
guidelines for cryptographic algorithm transition.
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• 1.7.5 Game-Theoretic Formalization

Define as extensive-form game Γ = (N,H, P, uc) where:

– N = {Prover,Verifiers, Solvers}

– H: History of blockchain states

– P : Player function mapping histories to players

– uc: Utility functions incorporating:

ui(s) = E[Ri(s)]− ci(s)

where Ri represents rewards and ci computational costs

Prove existence of Bayesian Nash equilibrium under:

βi(s−i) = argmax
si

E[ui(si, s−i)]

1.7.6 Comparative Advantages

The Timeproof protocol offers several advantages over traditional proof systems:

• Probabilistic Verification: Unlike deterministic proof systems, Timeproof provides
probabilistic evidence for the truth of a claim, making it suitable for long-standing open
problems like P vs NP .

• Incentive Mechanism: The bounty mechanism incentivizes the discovery of solutions,
while the temporal persistence of unclaimed bounties provides evidence for the negation
of claims.

• Blockchain Integration: The use of the Bitcoin mainnet blockchain ensures im-
mutability and verifiability, addressing the trust issues associated with traditional proof
systems.

However, Timeproof also has limitations, such as scalability challenges and reliance on the
computational difficulty of cryptographic puzzles.

1.8 Comparison with Prior Work

Timeproof distinguishes itself from existing approaches by integrating blockchain-based
timestamping, cryptographic escrow, and economic incentives to facilitate probabilistic
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mathematical verification. While traditional systems like Proof of Existence focus solely
on timestamping and Verifiable Delay Functions (VDFs) emphasize computational delays,
Timeproof combines these features with a robust probabilistic verification model. This enables
the protocol not only to establish the existence of a proof at a certain time but also to assess
the likelihood of its validity over time.

Table 1.2: Comparison with Related Protocols
Feature Timeproof Proof of Existence VDFs
Timestamping Yes Yes No
Mathematical Verification Yes No Partial
Economic Incentives Yes No No
Probabilistic Truth Yes No No
Quantum Resistance Partial Partial Yes

As seen in Table 1.2, Timeproof provides a comprehensive framework that encompasses:

• Accurate Timestamping: Like Proof of Existence, it leverages blockchain immutabil-
ity.

• Formal Mathematical Verification: It goes further by integrating a probabilistic
verification model, which is absent in many related protocols.

• Economic Incentives: A unique bounty mechanism ensures that claims are both
incentivized and contested, aiding in the dispute resolution over time.

This nuanced combination of features enables Timeproof to address long-standing and
challenging problems—such as the P vs NP problem—with a level of rigor and accountability
not found in prior approaches.

1.9 Future Directions

The Timeproof protocol opens several avenues for future research:

• Domain Extensions: The protocol could be adapted for use in scientific discovery,
legal disputes, or other domains where temporal persistence and verifiability are critical.

• Post-Quantum Security: Future work could explore the use of post-quantum crypto-
graphic primitives to ensure the protocol’s security in a quantum computing era.

• Scalability Improvements: Layer-2 solutions or alternative blockchains could be
investigated to address the scalability limitations of the protocol.
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1.9.1 Post-Quantum Security

While currently secure against classical computers, future quantum computers could poten-
tially break the cryptographic primitives used. We recommend the following quantum-resistant
alternatives:

• Hash Function: Replace SHA-256 with SHA-3 or a hash-based signature scheme like
SPHINCS+

• Public Key Cryptography: Replace ECDSA with a lattice-based scheme like
CRYSTALS-Dilithium

• Verifiable Delay Functions: Use quantum-resistant VDFs based on isogenies or class
groups

The protocol can be adapted to these post-quantum primitives while maintaining its core
functionality.

1.9.2 Attack Vectors and Mitigations

• Miner Collusion: Malicious miners could attempt to manipulate timestamps. Mitiga-
tion: Use multiple blockchain confirmations and consider cross-chain verification.

• Front-Running: An attacker could attempt to claim a bounty just before the legitimate
solver. Mitigation: Introduce a commit-reveal scheme for bounty claims.

• Time-Reversal Mining: Miners could attempt to reorganize the blockchain to alter
timestamps. Mitigation: Require sufficient proof-of-work depth for timestamp finality.

• Precomputation Attacks: While the salt prevents most precomputation, quantum
computers could still pose a threat. Mitigation: Use post-quantum cryptographic
primitives as described above.

1.10 Conclusion

Timeproof introduces a new paradigm for establishing probabilistic truth in complexity
theory through Bitcoin blockchain integration. By combining cryptographic mechanisms
with temporal persistence, the protocol enables verifiable priority claims for mathematical
assertions. Its secure design and implementation offer a robust foundation for advancing
research in mathematical verification and related domains.
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Glossary

Asymptotic Certainty The property that as time approaches infinity, the verification
function V (∆t) approaches 1 (complete certainty) if the claim is false.

Bayesian Nash Equilibrium A solution concept in game theory where players’ strategies
are optimal given their beliefs about other players’ strategies.

Blockchain Timestamping The process of recording the existence of data at a specific
time by including its hash in a blockchain transaction.

Brute Force Search A method of solving problems by systematically trying all possible
solutions until the correct one is found.

Cryptographic Escrow A mechanism where funds or information are held in a secure,
verifiable state until certain conditions are met.

Elliptic Curve Discrete Logarithm Problem (ECDLP) The mathematical problem
that forms the basis of elliptic curve cryptography, believed to be computationally hard
to solve.

Non-Homogeneous Poisson Process A statistical model used to describe events that
occur randomly over time, where the rate of occurrence can vary.

OpenTimestamps A protocol for creating blockchain-based timestamp proofs that can be
independently verified.

Preimage Resistance A property of cryptographic hash functions where it’s computation-
ally infeasible to find an input that hashes to a specific output.

Proof of Existence A cryptographic service that verifies the existence of a document at a
specific point in time.

Rainbow Table Attack A type of cryptographic attack that uses precomputed tables of
hash values to reverse cryptographic hash functions.

Salt S A random value used to ensure the uniqueness of the Bitcoin address A.

Temporal Monotonicity The property that the verification function V (∆t) never decreases
over time. As more time passes without a solution being found, confidence in the claim’s
falsity can only increase or stay the same, never decrease.
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Timeproof A cryptographic protocol for establishing probabilistic truth through temporal
persistence.

Verifiable Delay Function (VDF) A function that requires a specific amount of sequen-
tial computation to evaluate, providing a way to prove that time has passed.

Verification Function V (∆t) A function that quantifies confidence in the negation of a
claim over time.

Weibull Distribution A probability distribution often used in reliability engineering and
survival analysis, particularly useful for modeling time-to-failure data.

Zero-Knowledge Priority A mechanism that allows proving priority of a mathematical
claim without revealing the actual proof contents.
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